微纳芯 MNCHID

综合 I 检测冻干试剂盒 (微流控冻干化学法) 使用说明书

【产品名称】

-干试剂盒(微流控冻干化学法)

A型: 1 人份/盘片, 10 人份/盒; B型: 1 人份/盘片, 10 人份/盒。

A 型不含稀释液, B 型含稀释液,

【预期用途】

本产品与天津微纳芯科技股份有限公司生产的全自动干式生化分 本产品与天秤原的4公件技取付用级公司产"附至目动于大王比尔 材仪配差使用,用于体外定量检测人血清或血浆或静脉全血中总浆 白(TP)、白蛋白(ALB)、总胆红素(TBL)、丙氢酸氨基桂移酶 (ALT)、尿素(UREA)、肌酐(CRE)、尿酸(UA)、葡萄糖(GLU)、 甘油三酯(TG)、胆固醇(CHOL)、高溶度脂蛋白胆固醇(HDL-C)、 天门冬氨酸氨基转移酶(AST)、直接胆红素(DBIL)浓度或活性。 血液中上述十三项物质浓度改变,常见于肝胆系统、泌尿系统、糖 代谢及能代谢疾患, 检测血液中议此物质的浓度, 对相关疾病的铺 断具有重要意义。

【适用仪器】

大津微纳芯科技股份有限公司生产的全自动干式生化分析仪

Pointcare M1/M3/M4/M3i/M3i×4型、Celercare M5型。 【检验原理】

本产品基于分光光度法原理,对样品中 13 项生化指标的浓度或活 性进行定量測定。各检測项目反应原理如下: a) 总蛋白 (TP), 双缩脲法

在碱性溶液中,蛋白质的肽键与铜离子结合,生成蓝紫色化合物 在 546/800nm 波长附近的吸光度与肽键的数量成正比,据此可计算 出待测样品中蛋白质的浓度。 蛋白质肽键+Cu^{2s} — ^{報性溶液} → ⁴ b) 白蛋白 (ALB),溴甲酚紫法

→ 铜-蛋白复合物

白蛋白可与溴甲酚紫生成复合物,在波长 600/700nm 附近有吸收峰, 吸光度大小和白蛋白浓度成正比。

今の元文人へが中国は日本人文成正し。 白蛋白+溴甲酚紫 — → 溴甲酚紫-白蛋白复合物 c) 总胆红素 (TBIL),胆红素氧化酶法

胆红素在胆红素氧化酶(BOD)作用下氧化生成胆绿素,反应液在 胆红素吸收峰 450/546nm 附近吸光度下降,下降值与样品中胆红素 含量成正比。 BOD

胆红素+O₂ -→ 胆緑素+H₂O

d) 直接胆红素 (DBIL), 胆红素氧化酶法

在 pH3 左右、有表面活性剂的条件下,样品中的直接胆红素被胆红素氧化酶氧化为胆绿素,胆红素的黄色特异性吸光度下降,通过在 nm测定氧化反应前后吸光度的变化,计算出样品中直接胆 红素的含量。

直接胆红素+02 BOD→ 胆绿素+H₂C

且按照出版书U2·──→ EE球系+H2O e) 丙氨酸氨基转移酶(ALT),進率法 ALT 催化 L.丙氨酸生成丙酮酸,丙酮酸在乳酸脱氢酶(LDH)的催 化下生成 L.乳酸,同时将 NADH 氧化,NADH 在 340/405nm 有吸

取性の大規模 収略、吸光度下降速率与样品中 AIT 活性成正比 上丙氨酸+6酮戊二酸 $_{-}$ AIT $_{-}$ 丙酮酸+1-合氨酸 丙酮酸+NADH+H $_{-}$ DIII $_{-}$ $_$

L-天门冬氨酸与 α-酮戊二酸在 AST 催化作用下生成 L-谷氨酸和草

803〜mpaxに 車両帽や mpaxkx3mm(Co-PD) 催化ト脱氢,生成 磷酸葡萄糖酸,同时使 NADP还原为NADPH。NADPH在340/405 有吸收峰,吸光度大小和样品中葡萄糖浓度成正比。

葡萄糖+ATP — HK → G6P+ADP
G-6-P+NADP — G-6-PD → 6-PG+NADPH+H

h) 肌酐 (CRE),肌氨酸氧化酶法 肌酐在肌酐酶(CAH)的催化下水解生成肌酸,肌酸在肌酸酶(CRH)

的催化下水解产生肌氨酸和尿素,肌氨酸在肌氨酸氧化酶(SAO) 的催化下氧化成甘氨酸、甲醛和过氧化氢。在过氧化物酶(POD) 作用下,TBHBA被过氧化氢氧化并与4-氨基安替比林偶联显色。 在 546/700nm 处色泽深浅与样品中肌酐含量成正比。 肌酐+H₂O — CAH → 肌酸

加明+H₂O \xrightarrow{RH} 加収数 肌酸+H₂O \xrightarrow{RH} 加氨酸+尿素 肌氨酸+H₂O+O₂ \xrightarrow{SAO} 甘氨酸+甲醛+H₂O₂ 2H₂O₂+4-AAP+TBHBA \xrightarrow{POD} 配亚胺色素+H₂O

ZH9J++AAP+IBHBA → 無型原色素+H2O i 尿素(UREA),谷氨酸脱氢酶法 尿素在尿素酶(Urease)槽化下,水解生成氮和二氧化碳。氮在 α-酮戊二酸和 NADH 存在下,经谷氨酸脱氢酶(GLDH)催化,生成 谷氨酸。同时,NADH 被氧化,反应液在 NADH 吸收峰 340/405s 处吸光度下降,下降速率和样品中尿素含量成正比。 $尿素+2H_2O$ _Urease \rightarrow 2NH₄*+ CO_3^2 NH₄*+ α -酮戊二酸+NADH+H* \xrightarrow{GLDH} 谷氨酸+NAD*+H₂O

j) 甘油三酯 (TG),酶法 脂蛋白酯酶 (LPL) 使甘油三酯水解成甘油和脂肪酸,甘油与甘油

激酶 (GK) 和三磷酸腺苷 (ATP) 作用生成 3-磷酸甘油。3-磷酸甘油给过甘油-3-磷酸脱氢酶催化生成 NADH,NADH 经黄递酶催化与底物反应生成显色物质,该显色物质在 505/800nm 处有吸收峰,

別国商階級地国南岸艦牌(CEH)水解分游高胆固醇,后者被胆固醇 脱氢酶(CHDH)催化与 NAD 反应生成胆甾烯酮与 NADH,后者 在 340/405mm 处有吸收峰,吸光度大小与样品中总胆固醇含量成正

胆固醇酯+H₂O __CEH → 胆固醇+脂肪酸

胆固醇+NAD* <u>CHDH</u> 胆甾烯酮+ NADH+H* 1) 高密度脂蛋白胆固醇(HDL-C),沉淀法

样品中的非高密度脂蛋白被沉淀剂沉淀,液体中仅余高密度脂蛋白,其结合的胆固醇通过胆固醇脂酶的分解和胆固醇氧化酶的后续 催化生成过氧化氢,最终过氧化氢经过氧化物酶催化与底物反应生成有色物质,该物质在 600/700nm 处有吸收峰,吸光度大小与样品 、服固醇+脂肪酸

胆固醇 $+O_2$ __PEG排物胆固醇氧化酶 \rightarrow 胆甾-4-烯-3-酮 $+H_2O_2$ $H_2O_2+TOOS+4-AAP$ __过氧化物酶 \rightarrow 有色物质

照的系统(NA),由MA(NA) 保修在尿酸酶(UAO)催化下,生成尿囊素和过氧化氢。过氧化氢 和 4氨基安替比林、3.5-二氯-2-羟基苯磺酸在过氧化物酶(POD) 的催化下,生成有色物质在505/600nm 处有吸收峰,吸光度大小与 样品中尿酸含量成正比。 尿酸+O₂+H₂O _ <u>UAO</u> → 尿囊素+CO₂+H₂O₂

2H₂O₂+4-氨基安替比林+DHBSA <u>POD</u> 戰亚胺+H₂O

2.14.0.4.或基安管比外比150.2 —— 第23.2 —— 第23.

成分	含量
总蛋白检测试剂	13.5 μL
白蛋白检测试剂	13.5 μL
总胆红素检测试剂	13.5 μL
丙氨酸氨基转移酶检测试剂	13.5 μL
尿素检测试剂	13.5 μL
肌酐检测试剂	13.5 μL
尿酸检测试剂	13.5 μL
甘油三酯检测试剂	13.5 μL
胆固醇检测试剂	13.5 μL
高密度脂蛋白胆固醇检测试剂	13.5 μL
葡萄糖检测试剂	6.6 µL
天门冬氨酸氨基转移酶检测试剂	13.5 μL
直接胆红素检测试剂	13.5 μL
稳定剂	适量
 由田十年初会,即居台及孫叔宋 孫叔宋上所人 	/ ch / k +

3、 医// 中国的温水 生 次日留196年成。196年成分的 目 《下十八八次 和国药典》要求的纯化水,或更高等级的纯水。稀释液应避免长时 间暴露在空气中以防污染,建议使用单包装剂量较小的灭菌注射用 水,即开即用。

【储存条件及有效期】

【编程新作及有效明】

◆ 生产目期及使用期限、见标签

◆ 本产品应在 2-8°C无酸性性气体的环境下保存,有效期为 12 个 月。 试剂应片独立密封也较装有打形,必须在 20 分钟內使用。

本产品不得放置在超过 22°C 环境中的申请不得超过 2 小时。不得存放在太阳直射的环境中。

无凝块的抗凝全血,或者无溶血的血浆/血清。Pointc 建议使用肝素钾。

- 延以代刊所系理。 ◆ 样本采集后应在 30 分钟内进行检测,如在样本离体较长时间后 再行检测,可能影响检验结果的准确性。如果不能及时检测,应分 在 2-8°C避光密闭保存,并在 24 小时内检测,且样本可直接检测, 无须恢复室温。
- 无效恢复空温。
 ◆ 应采集缔整血样本,一般选择时前静脉,患者采取坐位或者仰卧位。 宜清晨空腹采集样本,用药后应超出药效周期后再进行采集。◆ 超出试剂盈焓测润目线性范围的样本,应对样本进行稀释后测定,可使用绝化水进行稀释后测定,最大稀释倍数为5倍。◆ 避免使用溶血样本。◆ 服用某些药物如氯丙嗪、水杨酸制剂等会对样本检测结果产生影響

¬¬。 ◆ 样品中干扰物质超出下表中限制浓度时,可能对相应项目检测结 果的准确性造成影响:

干扰物的限制浓度 (≤)								
项目	胆红素	Intralipid	维生素 C	丙酮酸	氯化铵	肌酸	血红蛋白	
	mg/dL	mg/dL	mg/dL	mmol/L	mmol/L	μmol/L	mg/dL	
TP	25	1050	l	I		l	200	
ALB	40	600	l	I		l	1000	
TBIL		1050	75		_		1000	
ALT	40	600	50	1	_	_	50	
UREA	25	600			1		1000	
CRE	40	1050	25	_	_	600	500	
UA	22.5	120	10	I			800	
GLU	40	600	50	I			1000	
TG	40		50		_		1000	
CHOL	40	1000	40		_	_	800	
HDL-C	20	2200	40		_		500	
AST	40	600	25	1			50	
DBIL		1050	75		_		200	

【**检验方法】** 1、器材准备

1、器材准备 数量适宜的试剂盘片,Pointcare MIM3M3i/M3i/A4M4、Celercare M5 型全自动于式生化分析仅内置离心功能。可将抗凝全血自动分 离全自动生化分析仅、稀释液、移液器、吸头、 2、操作步骤

 操作步骤
 按仪器使用说明书操作,扫描试剂盘片包装上的二维码,读取 试剂信息

试剂信息。
② A型、折吐试剂盘片平放,在样本孔加入约100μL特测样本,在稀释液孔加入约450μL稀释液,放在生化仪试剂盘片托盘正中。按
仅器操作现明技工行验则、读取检测结果。
B型、折出试剂盘片平放,在样本孔加入约100μL特测样本,斯
掉稀释液指条,放在生化仪试剂盘片托盘正中。按仅器操作说明书 进行检测。读取检测结果。 特别注意:

- 加样时,应在吸头尖头插入相应加液孔后,再按下移液器按钮, ◆ 周桂町, 原住现实头尖漏入相应加液几后, 再次下移液溶液址, 以保证液体完全进入盘片内部。 那样时如有液体液在盘片表面, 须 用吸水纸小心擦拭干净, 方可上机测试。 ◆ 试剂盘片加入样本和熔棒液后, 应立即上机测试。加样后的试剂 盘片在上规测试。 应避免过度解涂和故意振撼。 ◆ 样本加入量约为 90-120μ. 稀释液的加入量约为 430-470μL. 否则可能导致依赖过程异常。 ◆ 对塞位公式设施, 同一哪么不可再有用干部协会个样本, 也不可

- ·吸头不可重复用于吸取多个样本,也不可 为避免交叉污染,同-混用干吸取样本和稀释液。

校准程序

Pointcare MI/M3/M3i/M3i×4/M4、Celercare M5 型全自动干式生化分析仪已内置自动定标功能,按规定步骤操作即可得到正确的检验

结果, 如有需要,用户也可自行人工定标。 按 Póintcare M.I/M3/M3i/M3i×4/M4、Celercare M5 型全自动干式生 化分析(设明书研示方法操作。进入定标程序,将校准版加入试剂 盘的样本孔。A 型将稀释液加入稀释液孔。B 型斯掉稀释液铝条, 进行定标。 校准被可使用市售复合生化校准血清,但应注意其定值测衡性是否

改变试剂盒批号后,系统将恢复使用自动定标。

质量控制程序

+、灰黑江門在77 检測临床样本时应同批測试质控品,测值应在规定的靶值范围内。 质控品可使用市售复合生化质控血清。

5、试验结果的计算 Pointcare M1/M3/M3i/M3i×4/M4、Celercare M5 型全自动干式生化 分析仪内置计算功能,根据吸光度变化值自动计算各项目检验结

分析仪内置计算功能,根据吸光度变化值自动计算各项目程源24年 果,非是示和订印。 除了所能额的十三个项目外,生化仪将自动计算非显示和订印球蛋 自和低密度脂蛋白胆固醇含量、计模公式如下。 球蛋白(GLO,gl)—总蛋白-白蛋白 低密度脂蛋白胆固醇。(LDLC,mmolL)= 总胆固醇—高密度脂蛋白胆固醇—甘油三角22 注意。当身者为观像或补血症时,即型脂蛋白血却寸、TG> 4.52mmolL 时,上述计算 LDLC 的公式不适用,必须根据其他临 床表现鉴别,当 TG>4.52mmolL 时,将不计算 LDLC、「金金农間」

【参考区间】

【参**★区**似】 总董伯: 65-85 g/L 白董白: 40-55 g/L 总胜红素: 3.4-20 µmol/L 丙氨酸氨基转移酶: 男: 9-50 U/L 女: 7-40 U/L

尿素: 2.9~8.2 mmol/I. 肌酐: 男: 54~109 μmol/I 女: 45~84 μmol/L

查找到 15-40 U/L 查找到在第: 0-6 µmoUL 上述参考区间基于《全国始床检验操作规程(第四版)》和WS/T 40-2012 協然產務用生化餘級項目参考区间第 1 部分和第 2 部分,选 取健康人群建立,由于地理、人件、性别及年龄等差异,建议各临 床生化次验金建立自己的参考区间。 **【始始集开始解释**】

【他独体果的解释】 溶血样本可能对检验结果的准确性造成影响。 样品黄疸、脂类胶产面时,可能会对各项检验结果有不同程度的干 提。此时报告单上会识服器示标识。 本试的的论题结果仅增低压参多,不能作为单差或者排除病历的依 据,对患者的临床诊治应结合患者体征、病史以及其他实验室检查 及治疗反应等情况综合专患。 白蛋白现且在严度船血黄斑。那些严重时测定结果可能偏高。在 pat 低变化成一些轻粉代饱粉妆度过高时,测定结果可能偏高。在 于29%时间时间由进分时往紧贴的

ph 值 变化成一些探物代谢物况度过高时,测定结果可能偏低, 干扰物质超出限制深度时需要确认。 样本测定信高出本试构盘检测效性范围时,检测结果的偏差可能超 出预期,需要确认,原采用稀释或者其他方法重新检测。样本稀释 时可使用现性化系释。最大不超过 5 倍。 【检验方法的周限性】 本试剂或仅供体外漆新用,仅适用于天津微纬芯科技股份有限公司 生产的全自由于工生化分析区。 本试剂或在样品中干燥物质(如胆红素、脂类、维生素 C、丙酮酸 等)超出限制浓度时,会使测定结果产生部分偏离。 操作时必须严格按照能性规程、稀心操作才能得到正确结果,对操 样作程序的任何格次都可能较明结果。

作程序的任何條效都可能影响结果。 样本测量值高由达对总检测线性范围时,检测结果的偏差可能超 出预期,需要确认,应采用稀释或者其他方法重新检测。 自蛋白颗定为溴甲酚紫方法。 版色 时值 约5.2。 由于消离或者降低 时分仓燥料于自蛋白结合率 严。 金造成果的降低。 样本测定值高出本达剂盒检测线性范围时,检测结果的偏差可能超 由预期,应对非过行稀释后测定。可使用纯化水进行稀释。最大 稀释微数5.6 倍。 序产品格粉板5.1

【产品性能指标】

(产品性能物等)
A) 试剂空白吸光度
a) 急蛋白: A-20,2000
b) 白蛋白: A-20,7000
c) 急期紅主素: A-20,5000
d) 丙穀酸聚基体移輸: 」
e) 尿素: A-21,0000
f) 別時: A-20,2000
h) 葡萄糖: A-20,2000
h) 葡萄糖: A-20,6000
i) 甘油三酯: A-20,5000 A>1.0000

讨 計法二節: A
 A
 D
 D
 担間層: A
 D
 O
 O
 O
 D
 T
 T
 Y
 D
 E
 D
 D
 D
 E
 D
 E
 D
 E
 D
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 D
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E
 E

C) 准确度

各项目相对偏差 B%应符合以下规定: a) 总蛋白: B%≤5.0% b) 白蛋白: B%≤6.0%

b) 白蛋白, B%c5.0% c) 总胆红素, B%c10.0% d) 丙氨胺氨基种移精, B%c15.0% e) 尿素, B%c15.0% g) 尿酸, B%c10.0% g) 尿酸, B%c10.0% g) 尿酸, B%c10.0% h) 葡萄糖, 在浓度全4.16mmol/L 时, 绝对像差不超过±0.833mmol/L; 当浓度≥4.16mmol/L 时, 绝对像差不超过±0.833mmol/L; 由于温度。B%c15.0%

i) 日油二細: B%≤13.0% j) 胆固醇: B%≤10.0% k) 高密度脂蛋白胆固醇: B%≤10.0% l) 天门冬氨酸氨基转移酶: B%≤15.0%

m) 直接胆红素: B%<10.0%

ン, »<II-781M a) 总蛋白: 在 30~100g/L 范围内,相关系数 №0.9950; 线性相对偏 差应<6.0%。

差应≤6/%。
) 白蛋白:在10-60gL 范围内,相关系数≥0.9990: 样品 ALB 浓度在 20.1-60gL 范围内线性相对偏差应≤100%。在 10-20gL 范围内线性检约偏差应≤400%。在 10-20gL 范围内线性检约偏差应≤40gL。
) 总超红素。在2-800mm0L 范围内,相关系数≥0.9990。样品 TBil 浓度 30.1-800mm0L 时,线性相对偏差应≤10.0%。在 2-30mm0L 时,线性格对偏差应≤50mm0L 相关系数≥0.9990。样品 AIT 活性在 50-1100UL 市 线性相对偏差应≤10.0%。在 5-50UL 时,线性性对偏差应≤0.0UL。
② 尿素:在 50-35.7mm0L 范围内,相关系数≥0.9990。样品 Urea 浓度 45-35.7mm0L 遗图内,相关系数≥0.9990。样品 Web 对像差应≤0.00L。

ポ皮 4->-3. /mmool. mj. また田の伽を思いか。; 在 19-4. 5mmool. bj. また田の伽を夢心 5mmool. bj. 我性発射産差応 5mmool. bj. 教性を持定 1500μmol. 范围内,相关系数 ≥0.9900; 样品 Cre 浓度 70-1500μmol. bj. 我性相好檢差应≤10.0%。在 20-70μmol. bj. 我性程好檢差应≤10.0%。在 20-70μmol. bj. 我性能分析差差で7.0μmol. bj. 根状系数 ≥0.9900; 线性檢差 应至少符合以下二者之一;相对檢≥510.0%。或定对偏差

≤50.0μmol/L。 h) 葡萄糖: 在 1~30mmol/L 范围内,相关系数 r≥0.9900;样品 Glu

浓度在 3.5~30mmol/L 时,线性相对偏差应≤10.0%;在 1~3.5mmol/L 时,线性绝对偏差应≤0.5mmol/L。 i) 甘油三酯;在 1.13~9.04mmol/L 范围内,相关系数 ≥0.9900;线

性偏差应至少符合以下二者之一:相对偏差<10.0%,或绝对偏差

性侧定原生少可日のドー电之 少3.3mmo/L. j) 胆固醇:在 2-14mmo/L.范围内,相关系数 e20.9900;线性偏差 应至少符合以下二者之一:相对偏差=10.0%,或绝对偏差

②33mmo/L. k) 高密度脂蛋白胆固醇: 在 0.20~3.00mmo/L 范围内,相关系数≥0.9950; 线性偏差应至少符合以下二者之一:相对偏差≤10.0%。 或绝对偏差<0.10mmol/L.

爽密竹橋差の10mmol/L.
) 天门冬飯磨返鞋转移棚,在5~1100U/L 范围内,相关系数 ≥0.9900; 桿品 AST活性在50~1100U/L 时,线性相对偏差应≤10.0%。在5~50U/L 时,线性绝对偏差应≤50U/L.
ற 直接細圧素。在2~200mmol/L 范围内。相关系数 ≥0.9900;线性偏差应至少符合以下一者之一。相对偏差≤10.0%。或绝对偏差

≤5.0μmol/L。 E) 分析灵敏度

a) 总蛋白:

在线性范围内,每 70g/L 的吸光度变化值 ΔA 在

a) 岛蛋白: 在线性范围内,每70gL的吸光度变化值 ΔA 在
0.1500-7,000 之间。
b) 白蛋白: 桿品 ALB 浓度为 40gL 时的吸光度变化值 ΔA 在
1.4000-4,2000 之间。
c) 总胆红素: 在线性范围内,每 1μmol/L 的吸光度变化值 ΔA 在
0.0010-0.00500 之间。
d) 丙氨酸氨基转移糖:在线性范围内,每 10U/L 的吸光度变化率值

AA/min 在 0.0001~0.0100 之间。

ΔΑ/mm t: 0.0001-0.0100 之间。 © 尿素: 在建铁在侧阵,每 Immol/L 尿素的吸光度变化率值 ΔΑ/n 在: 0.0001-0.0300 之间。) 则酐: 样品 Cre 浓度为 100 μmol/L 时的吸光度变化值 ΔΑ 在: 0.0001-0.3000 之间。

0.0001-0.3000 之间。 g) 尿酸: 在线性范围内,每 10μ mol/L 尿酸的吸光度变化值 Δ A 在 0.0001-0.0300 之间。 h) 葡萄糖: 在线性范围内,每1mmol/L 的吸光度变化值 Δ A 在

II) на эмя: 11-24-26-28-75, ч напольт нуждоў скій да 1-0-1000-0-6000 之间。 i) 甘油三酯: 在线性范围内,每 lmmol/L 的吸光度变化值 ΔА 在 0-1000-1-5000 之间。

0.1000-1.5000 之间。) 〕 胆固醇,在线性范围内,每 Immol/L 的吸光度变化值 ΔA 在 0.0500-0.8000 之间。 k) 高密度脂蛋白胆固醇,在线性范围内,每 Immol/L 的吸光度变 化值 ΔA 在 0.0400-1.0000 之间。

rusi a.v. E.URID-1.0001 之间。 1) 天门冬頭酸氢基转移槽,在线性拖围内,每 10UL 的吸光度变化 率值 ΔΔ/min 在 0.0001-0.0100 之间。 m) 直接胆红素,在线性拖围内,每 1μmol/L 的吸光度变化值 ΔΑ 在 0.0001-0.0500 之间。

在 0,0010-0,0500 之间。 戶 重复性 (批內差变异系数 (CV) 应2.0%,应包括测试浓度为 (700-1,00) gT 的血清样品或成控样品 炒 自蛋白。 CV-2.0,应包括测试浓度为 (40±5) gL 的血清样品 或质控样品

c) 总胆红素: CV≤5.0% d) 丙氨酸氨基转移酶: CV≤5.0%

○ 尿素: CV≤5.0%f) 肌酐: CV≤5.0%, 应包括测试浓度为 (100±10) μmol/L 的血清 样品或质控样品 杆面現別が計画 身 尿酸: CV≤40% h) 葡萄糖: CV≤5.0% i) 甘油二糖: CV≤5.0% j) 胆固醇: CV≤4.0% k) 高密度脂蛋白胆固醇: 測试浓度为 (0.80±0.20) mmoUL 和

は) 高密度施設日期間解: 書店収度方 (0.39:0.20) mmod.L 相 (1.50:0.50)mmod.L 相

质控样品

c) 总胆红素: R≤10.0% d) 丙氨酸氨基转移酶: R≤10.0%

e) 尿素: R≤10.0% f) 肌酐: R≤10.0%,应包括测试浓度为(100±10)μmol/L 的血清样 f) 別情: R-10.0%。 歴包括測试液度为(100±10) μmol/L 附血 品或所控料品 g) 尿酸: R-5.0% h) 葡萄糖: R-10.0% j) 胆固醇: R-510.0% j) 胆固醇: R-6.0% k) 高密度脂蛋白胆固醇: 測试液度为(0.80±0.20) mmol/L 和 (5.04.5%) (5.04.5%)

(1.50±0.50)mmol/L 的样本,R≤10.0% l) 天门冬氨酸氨基转移酶: R≤10.0% m) 直接胆红素:R≤10.0%

m) 直接胆 H) 稳定性

在试剂盒使用有效期满时检测, 其性能应符合 A~F 的要求。

【注意事项】 1、本产品仅供体外诊断使用,试剂中所含化学成分接触人体后会

本产品人。
 产生不良影响。

广生不良要等。 2. 本产品的检测结果仅供临床参考,对患者的临床诊治应结合其 症状体征、病史、其他实验室检查及治疗反应等情况综合考虑。 3. 使用不同生产商的活剂对同一份样本能制可能会存在差异。 4. 试剂盘片只能一次性使用,完成检测的分混场。可能含有效 性病原并具感染性,必须按试验所在地法律规定的方法进行处理。

LEMPISK 才共惡樂性,必须按试验所在地法律規定的方法进行处理。 5、对所有样本和反应废弃物都应视为传染源对待,提示操作者采取必要的防护措施。 6、建议使用新鲜的血清样本,宜早晨采集样本,

6. 建议使用新鲜的血清样本,宜早晨采集样本,用药后应起出药 效周期后再采集,勿使用溶血样本。样本中可能等有资病病原体。 所以应按传染病实验室更求操作。 7. 建议实验室在正常室温。(25°C)条件下进行操作。 8. 采用不同方法学的试剂检测所容结果不应直接相互比较,以免 造成错误的低学解释,建议实验室在发给临床医生的检测报告中记 20°CH1494625

【参考文献】

华人民共和国卫生部医政司,《全国临床检验操作规程(第四版)》 【基本信息】 主册人/生产企业名称: 天津微纳芯科技股份有限公司

上册人生产企业名称: 大井塚町〜122号 A 区厂 生所: 天津经济技术开发区洞庭路 122号 A 区厂 住所: 房 1-4 楼全部、3 让所: 大津运的技术开及区洞庭館 122 写 161 / 房 1~4 段办公区 1 楼 2 楼 4 楼 5 楼全部、2 段办公区 5 楼全部 联系方式: 022-59861155 售后服务单位名称: 天津微纳芯科技股份有限公司

告后服务单位名称、大洋南部各种技股份有限公司 联系方法。(22-9861155 生产地址: 天津开发区洞庭路 122 号 A 区厂房 1F、2F-01、301、302、 303、304、305、308、4M-01 生产许可证据书,准据陆梯生产许 20110342 号 【医疗基梯社册证书编号产品技术要求编号】

【说明书批准日期及修改日期】

核准日期: 2018年11月01日 修改日期: 2024年07月08日